Electrically addressable parallel nanowires with 30 nm spacing from micromolding and nanoskiving.
نویسندگان
چکیده
This paper describes the fabrication of arrays of parallel, electrically addressable metallic nanowires by depositing alternating layers of thin films of metal and polymer-both planar and topographically patterned-and sectioning the laminated structures with an ultramicrotome (nanoskiving). The structures that resulted from this process had two distinct regions: one in which parallel Au nanowires were separated by a minimum distance of 30 nm, and one in which the nanowires diverged such that the distal ends were individually addressable by low-resolution (> or =10 microm) photolithography. Conductive polyaniline (PANI) was electrochemically deposited across the nanowire electrodes to demonstrate their electrical addressability, continuity, and physical separation. Before deposition, the wires were electrically isolated; with the PANI, they were electrically connected. After dry etching to remove the polymer, the gap between the nanowire electrodes returned to an insulating state. This procedure provides a method for making wires with dimensions and separations of <50 nm without the use of e-beam or focused-ion-beam "writing" and opens applications in organic and molecular electronics, chemical and biological sensing, and other fields where nanoscale distances between parallel conductive electrodes are desirable.
منابع مشابه
Directly addressable sub-3 nm gold nanogaps fabricated by Nanoskiving using self-assembled monolayers as templates.
This paper describes the fabrication of electrically addressable, high-aspect-ratio (>10000:1) nanowires of gold with square cross sections of 100 nm on each side that are separated by gaps of 1.7-2.2 nm which were defined using self-assembled monolayers (SAMs) as templates. We fabricated these nanowires and nanogaps without a clean room or any photo- or electron-beam lithographic processes by ...
متن کاملFabricating nanogaps by nanoskiving.
There are several methods of fabricating nanogaps with controlled spacings, but the precise control over the sub-nanometer spacing between two electrodes-and generating them in practical quantities-is still challenging. The preparation of nanogap electrodes using nanoskiving, which is a form of edge lithography, is a fast, simple and powerful technique. This method is an entirely mechanical pro...
متن کاملFree-standing NiTi alloy nanowires fabricated by nanoskiving.
We report on free-standing NiTi alloy nanowires (120 nm × 75 nm) fabricated using a technique referred to as "nanoskiving", which complements conventional thin film sputter deposition with ultramicrotomy for thin sectioning. To date, the technique has been limited to pure metals without exploring metallic alloys. Leveraging the technique for the fabrication of shape memory alloy (SMA) nanostruc...
متن کاملUse of thin sectioning (nanoskiving) to fabricate nanostructures for electronic and optical applications.
This Review discusses nanoskiving--a simple and inexpensive method of nanofabrication, which minimizes requirements for access to cleanrooms and associated facilities, and which makes it possible to fabricate nanostructures from materials, and of geometries, to which more familiar methods of nanofabrication are not applicable. Nanoskiving requires three steps: 1) deposition of a metallic, semic...
متن کاملNanoskiving core-shell nanowires: a new fabrication method for nano-optics.
This paper describes the fabrication of functional optical devices by sectioning quantum-dot-in-nanowires systems with predefined lengths and orientations. This fabrication process requires only two steps, embedding the nanowires in epoxy and using an ultramicrotome to section them across their axis ("nanoskiving"). This work demonstrates the combination of the following four capabilities: (i) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 8 12 شماره
صفحات -
تاریخ انتشار 2008